Problem 5A,1

Suppose $(X, \mathcal{S}), (Y, \mathcal{T})$ are measurable spaces. Prove that if A is a nonempty set of x and B is a nonempty set of Y such that $A \times B \in \mathcal{S} \otimes \mathcal{T}$, then $A \in \mathcal{S}, B \in \mathcal{T}$.

Proof. Consider the characteristic function of $A \times B \in S \otimes T$. This function is measurable so by 5.9 the cross section in both direction is measurable, which means $A \in S, B \in T$. \Box

Problem 5A,4

Suppose (X, S), (Y, T) are measurable spaces. Prove that if $f : X \to \mathbb{R}$ is S-measurable and $g : Y \to \mathbb{R}$ is \mathcal{T} -measurable and $h : X \times Y \to \mathbb{R}$ is defined to be h(x, y) = f(x)g(y), then h is $S \otimes \mathcal{T}$ -measurable.

Proof. Obviously the result holds if both f, g are characteristic function so moreover if both f, g are simple function. Then we can use simple function to approximate general f, g (2.89), so the result also holds for this case. \Box

Problem 5A,8

Suppose μ is a measure on measurable space (X, \mathcal{S}) , prove the following are equivalent:

- μ is σ -finite.
- There exists an increasing sequence $X_1 \subset X_2 \subset \ldots$ of sets in S such that $X = \bigcup_{k=1}^{\infty} X_k$ and $\mu(X_k) < \infty$ for every $k \in \mathbb{Z}^+$.
- There exists an disjoint sequence X_1, X_2, \ldots of sets in S such that $X = \bigcup_{k=1}^{\infty} X_k$ and $\mu(X_k) < \infty$ for every $k \in \mathbb{Z}^+$.

Proof. $2 \Rightarrow 3$ is by set $Y_k = X_k - X_{k-1}$ then Y_k is a disjoint sequence. $3 \Rightarrow 2$ is by set $Y_k = \bigcup_{j=1}^k X_j$. $2 \Rightarrow 1$ and $3 \Rightarrow 1$ is obvious. $1 \Rightarrow 2$ is just by set $Y_k = \bigcup_{j=1}^k X_j$. \Box

Problem 5A,9

Suppose μ, ν is σ -finite measure. Prove that $\mu \times \nu$ is also σ -finite.

Proof. Let $X = \bigcup_{k=1}^{\infty} X_k$ and $Y = \bigcup_{k=1}^{\infty} Y_k$ be the corresponding decompositions of μ, ν , which are also increasing sequences. Then $X \times Y = \bigcup_{k=1}^{\infty} X_k \times Y_k$ satisfies $\mu \times \nu(X_k \times Y_k) = \mu(X_k)\nu(Y_k) < \infty$. \Box

Problem 5B,1

• Let λ be the Lebesgue measure on [0, 1]. Show that

$$\int_{[0,1]} \int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(x) d\lambda(y) = -\frac{\pi}{4}$$
$$\int_{[0,1]} \int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(y) d\lambda(x) = \frac{\pi}{4}$$

• Explain why (a) violates neither Tonelli's theorem nor Fubini's theorem.

Proof. We only calculate the second formula. Write

$$\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} = \frac{1}{x^2 + y^2} - \frac{2y^2}{(x^2 + y^2)^2}$$

Then we have

 \mathbf{SO}

$$\int_{[0,1]} \frac{2y^2}{(x^2+y^2)^2} dy = \int_{[0,1]} -yd\frac{1}{x^2+y^2} = -\frac{1}{x^2+1} + \int_{[0,1]} \frac{dy}{x^2+y^2}$$
$$\int_{[0,1]} \int_{[0,1]} \frac{x^2-y^2}{(x^2+y^2)^2} d\lambda(x) d\lambda(y) = \int_{[0,1]} \frac{1}{x^2+1} dx = \frac{\pi}{4}$$

The function $\frac{x^2-y^2}{(x^2+y^2)^2}$ is not positive so doesn't satisfy the assumption of Tonelli's theorem. Also the function is not integrable on $[0,1] \times [0,1]$ so doesn't satisfy the assumption of Fubini's theorem.

Problem 5B,4

1.

Suppose (X, \mathcal{S}) is a measurable space and $f : X \to \mathbb{R}$ is a function. Let $graph(X) \subset X \times \mathbb{R}$ denote the graph of f:

 $graph(f) = \{(x, f(x)) | x \in X\}$

Let \mathcal{B} denote the Borel σ -algebra of \mathbb{R} . Prove that $graph(f) \in \mathcal{S} \times \mathcal{B}$ if $f : X \to \mathbb{R}$ is a \mathcal{S} -measurable function.

Proof. If $f: X \to \mathbb{R}$ is a S-measurable function, take

$$E_k = \bigcup_{j=1}^{2^k k-1} f^{-1}([\frac{j}{2^k}, \frac{j+1}{2^k})) \times [\frac{j}{2^k}, \frac{j+1}{2^k}], F_k = f^{-1}([2^k k, \infty]) \times [k2^k, \infty), G_k = E_k \bigcup F_k.$$

Then we have G_k is $\mathcal{S} \times \mathcal{B}$ -measurable and $\lim_{k \to \infty} G_k = graph(f)$, which shows $graph(f) \in \mathcal{S} \times \mathcal{B}$. \Box